Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.
نویسندگان
چکیده
We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH(2)O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 μm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 μm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 μm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat.
منابع مشابه
UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin.
The renal urea transporter gene (UT-A) produces different transcripts in the inner medullary collecting ducts (UT-A1) and thin descending limbs of Henle's loop (UT-A2), coding for distinct proteins. Peptide-directed rabbit polyclonal antibodies were used to identify the UT-A2 protein in renal medulla of mouse and rat. In the inner stripe of outer medulla, an antibody directed to the COOH termin...
متن کاملAlternative channels for urea in the inner medulla of the rat kidney.
The ascending thin limbs (ATLs) and lower descending thin limbs (DTLs) of Henle's loop in the inner medulla of the rat are highly permeable to urea, and yet no urea transporters have been identified in these sections. We hypothesized that novel, yet-unidentified transporters in these tubule segments could explain the high urea permeability. cDNAs encoding for Na(+)-glucose transporter 1a (SGLT1...
متن کاملMixed descending- and ascending-type thin limbs of Henle's loop in mammalian renal inner medulla.
Previous studies have generally indicated that the entire descending (DTL) and ascending thin limbs (ATL) of Henle's loops in the mammalian inner medulla exhibit structurally and functionally distinct properties. In the present study, we found that about 50% of Munich-Wistar rat inner medullary thin limbs, lying at positions distinctly above the bend, had segments exhibiting structural characte...
متن کاملArchitecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and d...
متن کاملLocalization and functional characterization of rat kidney-specific chloride channel, ClC-K1.
To investigate the physiological role of a kidney-specific chloride channel (ClC-K1), we sought to determine its exact localization by immunohistochemistry and its functional regulation using Xenopus oocyte expression system. The antiserum specifically recognized a 70-kD protein in SDS-PAGE of membrane protein from rat inner medulla and an in vitro translated ClC-K1 protein. Immunohistochemistr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 302 6 شماره
صفحات -
تاریخ انتشار 2012